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The effect of convective heat transfer
on unsteady boundary-layer separation
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The unsteady evolution of a boundary layer induced by a rectilinear vortex con-
vecting above a heated surface is considered numerically. This model problem is
representative of the types of interactions that can occur when vortices encounter
solid surfaces in a wide variety of diverse applications involving high-Reynolds-
number and high-Grashof-number flows. It is known that in the case without heat
transfer, the vortex-induced boundary layer evolves toward a singularity as it forms a
sharp spike that erupts away from the surface. Numerical solutions of the unsteady
mixed-convection boundary-layer equations in the Boussinesq limit are obtained in
Lagrangian coordinates. Solutions for various values of the inclination angle of the
surface and Grashof number show that the coupling between the fluid flow and heat
transfer can have a dramatic effect upon the transport of momentum and energy
within the boundary layer induced by the vortex. The unsteady eruption convects
high-temperature, near-wall fluid away from the surface and causes large gradients in
the thermal boundary layer. The buoyancy force acting on the heated boundary-layer
fluid can also have a significant impact on the unsteady separation process, either
accelerating or delaying it, depending upon the inclination angle of the surface.

1. Introduction
Unsteady separation occurs in a wide variety of flows of practical interest; it occurs,

for example, in dynamic stall of airfoils, juncture flows and turbulent boundary layers
(see, for example, Doligalski, Smith & Walker 1994). The common feature in these
diverse flow environments is an adverse pressure gradient imposed locally on the
surface that causes a recirculation region to form within the boundary layer. Unsteady
separation culminates in the local eruption of high-vorticity fluid from adjacent to
the surface into the outer inviscid flow. Although these events occur very rapidly and
on small spatial scales, they often alter the large-scale flow significantly and play a
central role in the dynamics of the flows mentioned above; therefore, much attention
has been given to providing a detailed physical explanation of the events leading up to
and occurring during the unsteady separation process. For example, Van Dommelen
& Shen (1982) and Peridier, Smith & Walker (1991a) have computed the unsteady
boundary-layer equations for flows involving unsteady separation; Elliott, Cowley &
Smith (1983), Smith (1988), Peridier, Smith & Walker (1991b) and Cassel, Smith &
Walker (1996) have considered the influence of viscous–inviscid interaction on the
unsteady separation process; Hoyle, Smith & Walker (1991) and Li et al. (1998)
have investigated the effect of normal pressure gradients, and Cassel (1996, 2000) has
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obtained numerical solutions of the full Navier–Stokes equations for a flow involving
unsteady separation to corroborate these three stages.

While there is still much that is not understood about the unsteady separation
process itself, there has been an increasing amount of work in recent years aimed at
determining the influence of various mechanisms on the unsteady separation process.
For example, it has been demonstrated by Degani, Walker & Smith (1998) that it
is possible to suppress unsteady separation using a moving wall, and Modi, Munshi
& Bandyopadhyay (1998) have shown that a moving wall at the leading edge of an
airfoil can delay the angle of attack at which stall occurs. Similarly, Chandrasekhara,
Wilder & Carr (1997) have demonstrated that the stall angle can be delayed using an
adaptive airfoil leading edge that is capable of changing shape locally. Leading-edge
suction has also been shown to be effective in controlling formation of the dynamic
stall vortex on airfoils by Karim & Acharya (1994) and Alrefai & Acharya (1996).
Finally, the effect of the interaction between a flexible surface and an external flow
on unsteady separation has been investigated by Kiran, Varley & Walker (1996) and
Pal & Sinha (1998).

One influence that has not been considered is that of convective heat transfer
on the unsteady separation process. There are many applications, such as in gas
turbines, where unsteady separation can occur in an environment where heat transfer
is also an important consideration. Puhak, Degani & Walker (1995) have considered
the unsteady separation that occurs upstream of obstacles. They obtained numerical
solutions for the flow in the symmetry plane upstream of a circular cylinder mounted
perpendicular to a surface and a two-dimensional ridge on a surface; in both cases
the surface was maintained at a temperature different from the mainstream. It was
shown that the development of an unsteady eruption leads to significant variations
in the heat transfer rate from the surface. Their investigation only considered the
forced-convection flow, in which the momentum equation is decoupled from the
energy equation and the heat transfer does not influence the fluid flow.

Investigations of the effect of mixed convection, where the fluid flow and heat
transfer are fully coupled, on boundary-layer separation have been limited to the
steady case. Stewartson (1962) was the first to consider the influence of heat transfer
on the boundary layer in the vicinity of a Goldstein (1948) singularity which occurs at
a point of zero wall shear stress. He found that the singularity only occurs at a point
of zero wall shear stress if the heat flux at that point is also zero. A modification
to Stewartson’s expansion near a point of zero wall shear has been provided by
Buckmaster (1970) for the cold wall case. The flow past a semi-infinite vertical plate in
which the buoyancy force opposes the boundary layer has been considered by Merkin
(1969), who obtained a combination of series and numerical solutions up to separation
for an isothermal surface, and Wilks (1974), who has considered the case with a
constant surface heat flux. Both the isothermal and constant heat flux conditions have
been studied by Hunt & Wilks (1980) for a vertical plate. Davies & Walker (1977) have
also obtained numerical solutions for a flow involving a linearly retarded mainstream
velocity and the boundary layer on a circular cylinder. The mechanism by which a
singularity could occur upstream of the point of zero wall shear stress on a horizontal
cold wall has been described by Schneider & Wasel (1985). More recent investigations
have focused on the effect of the inclination angle of the plate (Wickern 1991a), the
influence of the Prandtl number (Wickern 1991b), the form of the singularity on a
horizontal insulated wall (Daniels 1992; Daniels & Gargaro 1993) and the separation
due to a step change in surface temperature (Higuera 1997). The latter study involves
a triple-deck structure centred at the location where the step change occurs.
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Figure 1. Schematic of the vortex-induced boundary layer.

The objective of the present investigation is to determine the effect of mixed
convection on unsteady boundary-layer separation and the influence of the evolving
boundary-layer flow on the convective heat transfer. In order to facilitate this, a
model problem is considered involving a rectilinear vortex travelling in an otherwise
stagnant fluid above an infinite plane wall that is heated to a temperature above
that of the ambient fluid and is oriented at an arbitrary inclination angle. For the
case without heat transfer (or with forced convection) the boundary-layer flow for
this model problem is given by Peridier et al. (1991a). Here the coupled unsteady
boundary-layer momentum and energy equations are formulated in the Boussinesq
limit and solved numerically using the Lagrangian formulation. The results show that
not only does unsteady separation have a dramatic influence upon the convective heat
transfer, but mixed convection can also have a significant effect upon the unsteady
separation process. In particular, it is found that, depending upon the orientation of
the surface, unsteady separation can either be accelerated or delayed by the action of
the buoyancy force.

2. Vortex-induced mixed-convection boundary layer
Consider a rectilinear vortex of strength κ located in an otherwise stagnant fluid

and a distance L above an infinite plane surface as shown schematically in figure 1.
The surface is inclined an angle θ from the horizontal and heated to a temperature Ts,
which is above the ambient fluid temperature T∞. The dimensional streamwise and
normal coordinates (x∗, y∗) are defined along the surface and normal to the surface,
respectively, and velocity components (u∗, v∗) are defined in the (x∗, y∗) coordinate
directions. From inviscid theory (Walker 1978), a vortex with positive rotation remains
a distance L above the wall and is convected to the right with constant velocity
Vc = κ/2L by its image below the surface. The characteristic length L, vortex speed
Vc and time scale L/Vc are used to define dimensionless variables, and the problem is
formulated in a frame of reference moving with the vortex. In this frame the vortex is
centred at x = 0 and the wall moves in the negative x-direction, with dimensionless
velocity uw = −1. Due to the inviscid slip velocity induced by the vortex on the
surface, a boundary layer of thickness O(Re−1/2) forms across which the velocity
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is adjusted to relative rest at the surface. The Reynolds number is defined here as
Re = LVc/ν = κ/2ν, where ν is the kinematic viscosity. Walker (1978) shows that the
dimensionless mainstream velocity at the outer edge of the boundary layer for this
problem is

U∞(x) = −1 +
4

x2 + 1
. (2.1)

The corresponding pressure distribution, ∂p/∂x = −U∞ dU∞/dx, indicates that there
is a region of adverse pressure gradient acting on the boundary layer between the
vortex centre at x = 0 and the inviscid stagnation point located at x =

√
3.

2.1. Eulerian formulation

For two-dimensional laminar flow in the Boussinesq approximation, with the trans-
port coefficients being assumed constant, the boundary-layer equations for mixed
convection over a flat surface at arbitrary angle of inclination θ from the horizontal
are given in dimensional form by

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

∂2u∗

∂y∗2
+ gβ sin θ(T ∗ − T∞), (2.2a)

0 = −1

ρ

∂p∗

∂y∗
+ gβ cos θ(T ∗ − T∞), (2.2b)

∂T ∗

∂t∗
+ u∗

∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
= α

∂2T ∗

∂y∗2
, (2.2c)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0. (2.2d)

Here ρ is density, ν is kinematic viscosity, g is the acceleration constant, β is the
coefficient of thermal expansion, α is the thermal diffusivity, p∗ is the pressure and
T ∗ is the temperature. In a frame of reference moving with the vortex, the boundary
conditions are

u∗ = −Vc, v∗ = 0, T ∗ = Ts at y∗ = 0, (2.3a)

u∗ → VcU∞(x∗), T ∗ → T∞ as y∗ → δ, (2.3b)

where δ is the outer edge of the boundary layer. The boundary layer has a thickness
of O(Re−1/2); therefore, dimensionless boundary-layer variables are defined as follows:

x =
x∗

L
, y =

y∗

L
Re1/2, t =

t∗Vc
L
, (2.4a)

u =
u∗

Vc
, v =

v∗

Vc
Re1/2, p =

p∗

ρV 2
c

, T =
T ∗ − T∞
Ts − T∞ . (2.4b)

Substituting these variables into the boundary-layer equations (2.2) gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
+
Gr

Re2
sin (θ)T , (2.5a)

0 = −∂p
∂y

+
Gr

Re5/2
cos (θ)T , (2.5b)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Pr

∂2T

∂y2
, (2.5c)

∂u

∂x
+
∂v

∂y
= 0, (2.5d)

where Pr = ν/α is the Prandtl number, and Gr = gβ(Ts − T∞)L3/ν2 is the Grashof
number. The boundary conditions (2.3) become

u = −1, v = 0, T = 1 at y = 0, (2.6a)

u→ U∞(x), T → 0 as y →∞. (2.6b)

The pressure gradient term in (2.5a) may be expressed in terms of the mainstream
velocity distribution which is prescribed by (2.1). The momentum equation in the
direction normal to the wall (2.5b) produces a balance between the normal pressure
gradient and the buoyancy force in the normal direction, which is O(Gr/Re5/2).
Alternatively, the normal buoyancy force can be shown to induce a streamwise
pressure gradient (see, for example, Schneider & Wasel 1985). Integrating (2.5b)
across the boundary layer and then differentiating with respect to x gives

∂p

∂x
=

Gr

Re5/2
cos θ

∂

∂x

∫ ∞
y

T dy. (2.7)

This contribution to the streamwise pressure gradient can be combined with that from
the inviscid flow, written in terms of the mainstream velocity, to give the following
form of the streamwise momentum equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx
− Gr

Re5/2
cos θ

∂

∂x

∫ ∞
y

T dy +
∂2u

∂y2
+
Gr

Re2
sin (θ)T , (2.8)

which, along with the energy equation (2.5c) and continuity equation (2.5d), is an
alternative formulation of the mixed-convection boundary-layer equations.

If the surface is horizontal, i.e. θ = 0◦ or θ = 180◦, the last term in (2.8) vanishes,
and there is no buoyancy force in the streamwise direction. For this orientation of the
surface, one can consider a case with Gr/Re5/2 → 0, resulting in forced convection,

or Gr/Re5/2 = O(1), for which the buoyancy force in the normal direction induces a
streamwise pressure gradient as shown in (2.7). If the full range of inclination angles is
to be considered, the streamwise pressure gradient due to the buoyancy force normal
to the surface, which is O(Gr/Re5/2), is small compared to the buoyancy force in
the streamwise direction, which is O(Gr/Re2), as Re→ ∞. Therefore, we have forced
convection for all inclination angles θ if Gr/Re2 → 0. In this investigation, however,
it is of interest to consider the influence of mixed convection for the full range of
inclination angles; therefore, it is assumed that the buoyancy force in the streamwise
direction is of the same order as the inertial terms in the momentum equation, i.e.
Gr/Re2 = O(1), which results in there being no contribution to the pressure gradient
resulting from the normal buoyancy force. In addition, the case with Pr = O(1) is
considered; therefore, the momentum and thermal boundary layers have the same
order of thickness.

The flow is initiated in an impulsive start at t = 0, after which a boundary layer
forms along the surface which thickens proportional to t1/2. Therefore, Rayleigh
variables are introduced as follows:

ζ =
y

2t1/2
, Ψ =

ψ

2t1/2
, (2.9a, b)
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where ψ is the streamfunction defined by u = ∂ψ/∂y, v = −∂ψ/∂x. Substitution of

these variables into the governing equations (2.8), with Gr/Re5/2 → 0, and (2.5c) gives
the following set of equations:

4t
∂u

∂t
=
∂2u

∂ζ2
+ 2ζ

∂u

∂ζ
+ 4t

[
∂Ψ

∂x

∂u

∂ζ
− u∂u

∂x
+U∞

dU∞
dx

+
Gr

Re2
sin (θ)T

]
, (2.10a)

4t
∂T

∂t
=

1

Pr

∂2T

∂ζ2
+ 2ζ

∂T

∂ζ
+ 4t

[
∂Ψ

∂x

∂T

∂ζ
− u∂T

∂x

]
, (2.10b)

u =
∂Ψ

∂ζ
, (2.10c)

and the boundary conditions (2.6) become

u = −1, Ψ = 0, T = 1 at ζ = 0, (2.11a)

u→ U∞(x), T → 0 as ζ →∞. (2.11b)

The initial conditions are obtained by evaluating equations (2.10) as t→ 0 and solving
the resulting equations subject to the boundary conditions (2.11). This results in

u = (U∞ + 1)erf (ζ)− 1, T = 1− erf (Pr1/2ζ), (2.12a, b)

Ψ = (U∞ + 1)[ζerf (ζ)− π−1/2(1− e−ζ2

)]− ζ, (2.12c)

at t = 0. Similarly, the boundary conditions at upstream and downstream infinity are
obtained by considering equations (2.10) as x→ ±∞, where the streamwise gradients
go to zero. The resulting energy equation is the same as that for the initial condition;
therefore, equation (2.12b) is the boundary condition as x → ±∞. Due to natural
convection, however, the streamwise velocity at upstream and downstream infinity
must be computed from

4t
∂u

∂t
=
∂2u

∂ζ2
+ 2ζ

∂u

∂ζ
+ 4t

Gr

Re2
sin (θ)T , (2.13)

subject to the boundary conditions (2.11). Here T is given by (2.12b).
For computational purposes it is convenient to transform the semi-infinite physical

domain (−∞ 6 x 6 ∞, 0 6 ζ 6 ∞) to a finite domain (0 6 x̂ 6 2, 0 6 ζ̂ 6 1) using
the transformations

x̂ = 1− 2

π
arctan

(
x

a

)
, ζ̂ =

2

π
arctan

(
ζ

b

)
. (2.14a, b)

Reducing the parameters a and b concentrates more grid points in the physical grid
near x = 0 and ζ = 0, respectively, providing greater resolution along the wall and
immediately beneath the centre of the vortex. Application of these transformations
to (2.10) gives the Eulerian formulation in its final form as

4t
∂u

∂t
= P

∂2u

∂ζ̂2
+ (Q1 + Q2)

∂u

∂ζ̂
+ R

∂u

∂x̂
+ S, (2.15a)

4t
∂T

∂t
=

P

Pr

∂2T

∂ζ̂2
+

(
Q1

Pr
+ Q2

)
∂T

∂ζ̂
+ R

∂T

∂x̂
, (2.15b)

u = Γζ(ζ̂)
∂Ψ

∂ζ̂
, (2.15c)
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where the coefficients are

P (ζ̂) = Γ 2
ζ (ζ̂), (2.16a)

Q1(ζ̂) = Γζ(ζ̂)Γ
′
ζ(ζ̂), (2.16b)

Q2(x̂, ζ̂, t) = 2b tan

(
πζ̂

2

)
Γζ(ζ̂) + 4tΓ ζ(ζ̂)Γx(x̂)

∂Ψ

∂x̂
, (2.16c)

R(x̂, ζ̂, t) = −4tΓx(x̂)u, (2.16d)

S(x̂, ζ̂, t) = 4t

[
U∞

dU∞
dx

+
Gr

Re2
sin (θ)T

]
. (2.16e)

In the above expressions Γx and Γζ are defined by

Γx(x̂) = − 1

πa
[1− cos (πx̂)], Γζ(ζ̂) =

1

πb
[1 + cos (πζ̂)]. (2.17a, b)

The initial conditions (2.12) and the boundary conditions (2.11) and (2.13) are likewise

written in terms of x̂ and ζ̂.
Starting at t = 0, an iteration is carried out on the coupled equations (2.15) at each

time step until the relative difference between the dependent variables, i.e. u(x̂, ζ̂, t),

T (x̂, ζ̂, t) and Ψ (x̂, ζ̂, t), at successive iterates is less than some tolerance value. The
momentum and energy equations are solved on a uniform grid in computational space

(x̂, ζ̂) using a factored ADI method similar to that described by Peridier et al. (1991a),
and the streamfunction is determined by integration of (2.15c) using Simpson’s rule.
The factored ADI method is second-order accurate in both space and time and utilizes
a Crank–Nicolson approach for the time stepping in which quantities are evaluated
midway between the current and previous time steps. The algorithm also employs
second-order-accurate upwind-downwind differencing of the first-order derivatives in
order to ensure diagonal dominance of the tridiagonal matrix problems which arise
from the discretization of the governing equations. The method has been found to
work well in obtaining solutions of unsteady two-dimensional problems in which
severe gradients develop locally, in particular flows involving unsteady separation.

Previous attempts to compute the classical boundary-layer equations subject to
an adverse pressure gradient in the Eulerian formulation have proven to be very
difficult (see, for example, Walker 1978). For the case of the vortex-induced boundary
layer being considered here, it has been shown that a region of recirculating flow
develops within the boundary layer as a result of the adverse pressure gradient. As
the boundary layer evolves, the recirculation region grows in size and induces strong
outflows normal to the surface on the upstream side of the recirculating eddy. As
these outflows become progressively more intense, and consequently more difficult to
resolve, the numerical calculation breaks down; Walker (1978) found that this occurs
at approximately t = 0.75. It has become apparent from several attempts to compute
similar flows that numerical schemes using the conventional Eulerian formulation and
fixed grids are unable to accurately resolve the latter stages of such eruptive events.
Instead it is necessary to use adaptive grids, as demonstrated by Adams, Conlisk &
Smith (1995) and Xiao, Adams & Conlisk (1996), or to calculate the Lagrangian
formulation of the unsteady boundary-layer equations.

Due to the difficulties associated with obtaining numerical solutions of boundary-
layer flows involving unsteady separation in conventional Eulerian coordinates, the
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mixed-convection boundary-layer equations are reformulated in Lagrangian coordi-
nates as shown in the next section. This approach has been found to be effective for
the vortex-induced boundary-layer flow without heat transfer (Peridier et al. 1991a)
and the flow over an impulsively-started circular cylinder (Van Dommelen & Shen
1982), which exhibits similar eruptive behaviour. In this investigation, as in Peridier
et al. (1991a), numerical solutions of the Eulerian formulation are performed im-
mediately following the impulsive start to capture the thickening Rayleigh layer. The
calculations then switch over to the Lagrangian formulation in order to accurately
resolve the latter stages of the separation process, including the singularity.

2.2. Lagrangian formulation

In the Lagrangian description of fluid motion, the trajectories of the fluid particles
are determined as functions of their initial locations and time. Taking ξ to be the
initial streamwise location and η to be the initial normal location of the fluid particles
at some time t = t0, the dependent variables are the streamwise and normal particle
positions x = x(ξ, η, t) and y = y(ξ, η, t), respectively, and the corresponding velocity
components u = u(ξ, η, t) and v = v(ξ, η, t). In Lagrangian coordinates the boundary-
layer equation (2.8) becomes

∂u

∂t
= U∞

dU∞
dx

+

[
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

]2

u+
Gr

Re2
sin (θ)T , (2.18a)

where
∂x

∂t
= u. (2.18b)

Similarly, the energy equation (2.5c) becomes

∂T

∂t
=

1

Pr

[
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

]2

T . (2.18c)

Note that the pressure gradient term, i.e. the first term on the right-hand side of (2.18a),
is expressed in terms of the current streamwise particle position x(ξ, η, t). One of the
primary advantages of the Lagrangian formulation of the boundary-layer equations is
evident from (2.18). Observe that the momentum and energy equations do not involve
the particle positions y(ξ, η, t) and velocities v(ξ, η, t) normal to the surface; it is these
quantities that become large, and in fact singular, as a boundary-layer eruption occurs.
Equations (2.18), therefore, may be used to calculate the streamwise particle position
x(ξ, η, t), the streamwise velocity u(ξ, η, t) and the temperature T (ξ, η, t), quantities
which remain finite even as y(ξ, η, t) and v(ξ, η, t) become singular.

In order to resolve the Rayleigh layer, it is convenient to compute the initial stages
of the flow after the impulsive start at t = 0 using the Eulerian formulation given
in the previous section and then switch over to the Lagrangian formulation at some
time t0. Therefore, the initial conditions for the Lagrangian calculation are

x(ξ, η, t) = ξ, u(ξ, η, t) = u0(ξ, η), T (ξ, η, t) = T0(ξ, η) at t = t0, (2.19)

where u0(ξ, η) and T0(ξ, η) are the streamwise velocity and temperature distributions
at t = t0 from the Eulerian calculation. The boundary conditions at the wall and as
the mainstream is approached are

u = −1, T = 1 at η = 0, (2.20a)

u→ U∞(x), T → 0 as η →∞. (2.20b)
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The flow at upstream and downstream infinity is plane parallel; therefore, y = η for
all t, and from (2.12b) with (2.9)

T = 1− erf

(
Pr1/2 η

2t1/2

)
as ξ → ±∞. (2.21)

The corresponding streamwise velocity boundary conditions are determined by solving

∂u

∂t
=
∂2u

∂η2
+
Gr

Re2
sin (θ)T , (2.22)

where T is given by (2.21). This equation takes into account the natural convection
occurring at upstream and downstream infinity.

At any stage during the integration of the momentum and energy equations (2.18),
the normal particle positions y(ξ, η, t) may be determined from a solution of the
continuity equation, which in Lagrangian coordinates takes the form

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1, (2.23)

for incompressible flows. Equation (2.23) indicates that the Jacobian of the particle
positions remains equal to one. The streamwise particle positions x(ξ, η, t) at a given
time are known from a solution of (2.18); therefore, the continuity equation (2.23) is a
first-order linear partial differential equation for the normal particle positions y(ξ, η, t).
Solutions of the continuity equation at a given time are obtained by integrating along
curves of constant x having the characteristic equations

dξ

−∂x/∂η =
dη

∂x/∂ξ
= dy. (2.24)

This integration is performed using a predictor–corrector algorithm similar to that
described by Peridier et al. (1991a). The integration is initiated at the wall, where the
particle positions are known due to the no-slip condition, and proceeds along the
characteristics to the outer edge of the boundary layer. When plotted on the (ξ, η)-
plane, a curve of constant x represents the initial positions of a set of fluid particles
which at the current time are located along the vertical line ξ = x = constant.

A singularity occurs in the boundary-layer equations when a fluid particle initially
located within the boundary layer is at some time ts located an infinite distance
from the surface (on the boundary-layer scale). This occurs when a stationary point
develops in the x-field indicated by

∂x

∂ξ
=
∂x

∂η
= 0 at ξ = ξs, η = ηs, t = ts. (2.25)

This criterion for the formation of a singularity is clear and unambiguous and
marks a second advantage of Lagrangian calculations over those carried out in
Eulerian coordinates, for which the criterion for a singularity is very difficult to
evaluate numerically. In order to detect the onset of a singularity, the ∂x/∂ξ = 0
and ∂x/∂η = 0 curves are tracked during the calculation in a manner similar to
that used by Degani et al. (1998) to determine the time and location where they first
intersect. The onset of a singularity indicates that a fluid particle initially located at
(ξs, ηs) has at time ts been compressed to zero thickness in the streamwise direction
and expanded to infinite thickness in the normal direction due to conservation of
mass for an incompressible fluid. Such an occurrence violates the assumption that the
boundary layer remains thin and does not interact with the outer inviscid flow, thus
resulting in a singularity.
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Just as in the Eulerian formulation, the domain is transformed to a finite region

(0 6 ξ̂ 6 2, 0 6 η̂ 6 1) using transformations similar to (2.14), namely

ξ̂ = 1− 2

π
arctan

(
ξ

a

)
, η̂ =

2

π
arctan

(
η

b

)
, (2.26a, b)

with analogous transformations for the dependent variables x(ξ, η, t) and y(ξ, η, t).
Applying these transformations to the governing equations (2.18) and (2.23) gives

∂u

∂t
= P

∂2u

∂η̂2
+W

∂2u

∂ξ̂2
+ Z

∂2u

∂ξ̂∂η̂
+ Q

∂u

∂η̂
+ R

∂u

∂ξ̂
+ S, (2.27a)

∂x̂

∂t
= Γξ(x̂)u, (2.27b)

∂T

∂t
=

1

Pr

[
P
∂2T

∂η̂2
+W

∂2T

∂ξ̂2
+ Z

∂2T

∂ξ̂∂η̂
+ Q

∂T

∂η̂
+ R

∂T

∂ξ̂

]
, (2.27c)

∂x̂

∂ξ̂

∂ŷ

∂η̂
− ∂x̂

∂η̂

∂ŷ

∂ξ̂
=
Γξ(x̂)Γη(ŷ)

Γξ(ξ̂)Γη(η̂)
, (2.27d)

where the coefficients in (2.27a, c) are given by

P = γ

(
∂x̂

∂ξ̂

)2

, W = γ

(
∂x̂

∂η̂

)2

, Z = −2γ
∂x̂

∂ξ̂

∂x̂

∂η̂
, (2.28a–c)

Q = γ

[
Γ ′η(η̂)

Γη(η̂)

(
∂x̂

∂ξ̂

)2

+
∂x̂

∂ξ̂

∂2x̂

∂ξ̂∂η̂
− Γ ′ξ(ξ̂)

Γξ(ξ̂)

∂x̂

∂ξ̂

∂x̂

∂η̂
− ∂x̂

∂η̂

∂2x̂

∂ξ̂2

]
, (2.28d)

R = γ

[
Γ ′ξ(ξ̂)

Γξ(ξ̂)

(
∂x̂

∂η̂

)2

+
∂x̂

∂η̂

∂2x̂

∂ξ̂∂η̂
− Γ ′η(η̂)

Γη(η̂)

∂x̂

∂ξ̂

∂x̂

∂η̂
− ∂x̂

∂ξ̂

∂2x̂

∂η̂2

]
, (2.28e)

S = U∞
dU∞
dx

+
Gr

Re2
sin (θ)T . (2.28f)

Here a prime denotes an ordinary derivative with respect to the indicated variable.
The coefficient γ is defined by

γ(x̂, ξ̂, η̂) =

[
Γξ(ξ̂)

Γξ(x̂)
Γη(η̂)

]2

, (2.29)

and Γξ and Γη are given by

Γξ(ξ̂) = − 1

πa
[1− cos (πξ̂)], Γη(η̂) =

1

πb
[1 + cos (πη̂)]. (2.30a , b)

The boundary conditions (2.20)–(2.22) are likewise transformed using (2.26).
As discussed previously, the initial stages of the flow after the impulsive start

are calculated using the Eulerian formulation described in the previous section until
some time t = t0 at which time the Lagrangian calculation is initiated. It is convenient
to define the initial conditions for the particle positions to be coincident with the
Eulerian mesh at the switch-over time t0; therefore,

ξ̂ = x̂, η̂ = ζ̂ at t = t0. (2.31)
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Figure 2. Instantaneous streamlines for the forced-convective case. (a) t = 0.5, (b) t = ts = 1.0127.

The first of these conditions is accomplished by using the same transformations on the
streamwise coordinate in both the Eulerian and Lagrangian formulations. In order
for the second condition to be satisfied, recall that ζ is a Rayleigh variable in the
Eulerian formulation defined by ζ = y/2t1/2. Therefore, taking bζ to be the stretching
parameter in the transformation used in the Eulerian formulation and bη to be that
used in the Lagrangian formulation, (2.31) is satisfied if bη is chosen such that

bη = 2t
1/2
0 bζ. (2.32)

Accomplishing the switch over to the Lagrangian calculation in this way does not
require any interpolation of the Eulerian solution. Here the switch-over time is chosen
to be t0 = 0.25, in which case bη = bζ; however, other values also have been tested to
ensure that the solutions are independent of the choice of t0. In order to advance the
solution in Lagrangian coordinates, equations (2.27a–c) are solved using an algorithm
similar to that used to solve (2.15) in the Eulerian formulation (Peridier et al. 1991a).

3. Numerical results
In general, equations (2.15) (or equations (2.27) in Lagrangian coordinates) are

coupled, and the momentum and energy equations must be solved simultaneously.
When the surface is horizontal (θ = 0◦, 180◦), however, there is no buoyancy force
in the streamwise direction, and the fluid flow becomes uncoupled from the heat
transfer leading to a forced-convective flow. This is a consequence of considering the
parameter range where Gr/Re2 = O(1) due to our interest in computing the flow for
all angles of inclination. If one were only considering the horizontal case, it would be
possible to consider another parameter range where Gr/Re5/2 = O(1) in which case
the buoyancy force in the normal direction induces a streamwise pressure gradient as
shown in equation (2.8).

For the forced-convective case, with θ = 0◦, 180◦, the numerical results obtained
here for the flow field are the same as those given by Peridier et al. (1991a) in which the
boundary layer develops a secondary recirculation region due to the adverse pressure
gradient induced by the vortex. The secondary eddy is shown in figure 2(a), which
shows the instantaneous streamlines on the boundary-layer scale at time t = 0.5. All
results shown are for Pr = 1 and, unless stated otherwise, have been obtained on a

uniform mesh in (ξ̂, η̂) composed of 201 and 101 grid points in the streamwise and
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Figure 3. Isotherms in increments of T = 0.1 for the forced-convective case.
(a) t = 0.5, (b) t = ts = 1.0127.

normal directions, respectively, with the stretching parameters in the transformations
being set to a = b = 1. Calculations also have been performed on finer grids, up
to 401 × 201, and using different values of the stretching parameters in order to
ensure grid independence. As the boundary layer evolves, the spatial extent of the
recirculation region grows, in particular in the direction normal to the surface. The
presence of this growing recirculating eddy acts as a barrier to the oncoming flow, an
effect which is accentuated by its ‘ploughing’ motion upstream, and results in a strong
focusing of the flow in a narrow streamwise region on the upstream side of the eddy.
In the region between the inviscid stagnation points at x = ±√3, the boundary-layer
flow is from left to right; therefore, motion to the left within this region is said to
be upstream. Figure 2(b) shows the instantaneous streamlines at time ts = 1.0127 at
which a singularity occurs in the boundary-layer equations at xs = −0.22. Note that
the slight difference in singularity time compared to that determined by Peridier et
al. (1991a) is attributed to the different methods used to determine the singularity
time as described in § 2.2. The onset of the singularity signals that the boundary-layer
assumptions, namely that the boundary layer remains thin and has negligible influence
on the outer inviscid flow, break down locally near the eruption.

As one would expect, this locally erupting flow has a dramatic effect upon the
convective heat transfer within the boundary layer. The constant-temperature contours
in figure 3(a) at t = 0.5 (corresponding to figure 2a) show that the outflows induced
within the boundary layer by the secondary eddy cause the heated near-wall fluid to
be convected away from the surface leading to the development of a high-temperature
plume. In the latter stages of the calculation, the formation of the singularity results
in an abrupt eruption of high-vorticity, high-temperature fluid from adjacent to
the surface in a very narrow region near xs = −0.22 as shown in figure 3(b). The
singularity occurs on the upstream side of the secondary eddy and the corresponding
high-temperature plume and results in very large temperature gradients in this region.

In addition to having a pronounced effect upon the convective heat transfer within
the boundary layer, this eruptive behaviour also induces large variations in the
heat transfer from the heated surface. The temporal evolution of the convective heat
transfer coefficient h = −(∂T/∂y)y=0 is shown in figure 4. The convective heat transfer
coefficient upstream and downstream of the eruptive region decreases with time due
to the thickening of the overall boundary layer following the impulsive start, and the



The effect of convective heat transfer on unsteady boundary-layer separation 119

h

3

2

0
–4 –2 0 2 4

x

1

t = 0.1

t = 1.0

Figure 4. Temporal development in increments of t = 0.1 of the convective heat transfer
coefficient for the forced-convective case.

thermal gradients become less pronounced as the heat diffuses away from the surface.
In the region beneath the centre of the vortex near x = 0, a local minimum in the heat
transfer coefficient begins to develop as a result of the convection of the heated fluid
away from the surface forming the high-temperature plume. As the singularity time
is approached, this local minimum intensifies, and a local maximum also appears just
upstream of the separation point as a result of the inflow from the outer portion of
the boundary layer just upstream of the secondary recirculation region (see figure 2b).
Although not as pronounced, this type of behaviour in the surface heat flux was also
observed by Puhak et al. (1995) who considered the boundary-layer flow upstream
of obstacles which exhibit similar eruptive behaviour. It has also been observed in
gravity current flows where the vortices spawned from the advancing head interact
with the surface and cause locally eruptive behaviour producing sharp spikes in the
heat transfer from the wall (Rehm et al. 1995).

Thus far the forced-convective case has been considered in which the heat transfer
has no influence upon the fluid flow. Next it is of interest to consider the case
when the surface is inclined from the horizontal so that the buoyancy force in the
streamwise direction is non-zero, and the flow field and heat transfer are coupled,
i.e. the mixed-convection case. A series of calculations has been carried out for the
full range of inclination angles (0◦ < θ < 360◦) in increments of 15◦ with a fixed
value of Gr/Re2 = 4. Results for the time ts at which the singularity occurs and
the streamwise position xs and speed us of the singular point are given in figure
5. The values given for θ = 0◦, 180◦ and 360◦ represent the forced-convective case.
Although this is a strongly forced environment, it is clear that the effect of even
moderate buoyancy on the flow field can be very significant. Notice in particular that
for 0◦ < θ < 180◦, the time at which the singularity occurs is delayed, separation
occurs farther downstream, and the magnitude of the local streamwise velocity at
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Figure 5. Singularity time ts, position xs and speed us for Gr/Re2 = 4 and various inclination
angles in increments of 15◦.
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Figure 6. Singularity time ts, position xs and speed us for θ = 270◦ and various Gr/Re2.

separation is smaller. For 180◦ < θ < 360◦, on the other hand, the onset of the
singularity is accelerated by the action of buoyancy forces, and while the streamwise
position of separation changes very little, the magnitude of the local velocity increases
significantly. For the cases with 0◦ < θ < 180◦, the buoyancy force acts in the positive
x-direction and counteracts the effects of the adverse pressure gradient, dampening its
influence on the boundary-layer flow. For 180◦ < θ < 360◦, the buoyancy force acts
in the same direction as the adverse pressure gradient, i.e. the negative x-direction,
accelerating the separation process.

The buoyancy force has its greatest influence when the surface is vertical, i.e. θ = 90◦
or θ = 270◦, and it is of interest to consider these cases in more detail. It might be
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Figure 7. Instantaneous streamlines for θ = 270◦, Gr/Re2 = 10. (a) t = 0.5, (b) t = ts = 0.6192.

expected that the trends observed in figure 5 would continue for fixed inclination
angles and increasing values of the buoyancy force. Indeed for θ = 270◦, for which
the buoyancy force accelerates the separation process, the trends stated above continue
for increasing Gr/Re2 as shown in figure 6. For example, the streamlines for the case
with Gr/Re2 = 10 are shown in figure 7 at t = 0.5 and t = ts = 0.6192. For this case
the secondary recirculation region appears slightly later in time and farther from the
surface compared to the forced-convective case (cf. figure 2a). However, the point
that becomes singular travels upstream more rapidly, i.e. |us(θ = 270◦)| > |us(θ = 0◦)|,
hastening the onset of the singularity. The reason for this can be observed from the
isotherms shown in figure 8. The isotherms at t = 0.5, shown in figure 8(a), appear
very similar to those at the corresponding time in the forced-convective case (cf.
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Figure 8. Isotherms in increments of T = 0.1 for θ = 270◦, Gr/Re2 = 10.
(a) t = 0.5, (b) t = ts = 0.6192.

figure 3a) except that the high-temperature plume is located farther upstream, and
the temperature gradients on the upstream side of the expanding plume are larger.
The heated plume tends to be convected upstream by the buoyancy force acting in
the negative x-direction, accelerating the ‘ploughing’ motion on the upstream side
of the secondary eddy. This results in the onset of the singularity at a much earlier
time, i.e. ts = 0.6192, than for the forced-convective case (ts = 1.0127). Observe also
that in the forced-convective case a portion of the secondary eddy is entrained within
the erupting spire (see figure 3b); whereas, for the case shown in figures 7 and 8,
the singularity occurs slightly upstream of the secondary eddy which appears largely
unaffected by the onset of the singularity.

For an inclination angle of θ = 90◦, where the buoyancy force acts in the down-
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Figure 9. Singularity time ts, position xs and speed us for θ = 90◦ and various Gr/Re2.

stream, i.e. positive x, direction, the results are qualitatively different. Figure 9 shows
the singularity time, position and speed as Gr/Re2 is increased. The results for cases
with Gr/Re2 > 6 have been computed on a 401× 201 grid with a = b = 2. For
Gr/Re2 6 5 the trends indicated above for 0◦ < θ < 180◦ continue, namely that the
singularity is delayed as Gr/Re2 is increased. This is a result of the buoyancy force
acting on the high-temperature plume, counteracting the upstream motion of the
growing spike. The streamline pattern shown in figure 10(a) is indicative of the flow
at early times in this regime in that the secondary eddy appears closer to the surface
than for the forced-convective case but at approximately the same time, and it grows
less rapidly. Observe also that the dividing streamlines between the primary vortex
and the surrounding flow bow out near the surface. This type of behaviour is remi-
niscent of the results for the vortex-induced boundary layer above a moving wall as
the wall speed is increased (Doligalski & Walker 1984; Degani et al. 1998).

It has been found that between Gr/Re2 = 5 and 6 there is a distinct change in the
nature of the flow during the latter stages of the boundary-layer calculation resulting
in a significant change in the location and velocity of the singularity as shown in
figure 9; in addition, there is a reversal in the trend observed for Gr/Re2 6 5 in which
the singularity time is delayed. The reason for the abrupt change in the singularity
is evident in figures 10(b) and 11(b) which show the instantaneous streamlines and
isotherms, respectively, at the singularity time for the case with Gr/Re2 = 6. Although
a spike has formed on the upstream side of the secondary eddy as before, its streamwise
thickness is significantly greater and it does not result in a singularity. Instead a
singularity forms at the streamwise location xs = 1.3923 and is moving downstream
with a velocity of us = 0.5444 rather than moving upstream as in the previous cases
described. It is evident from the streamlines and isotherms at the singularity time
that the singularity is somewhat weaker in the sense that the gradients are much less
severe where the eruption occurs. It appears that the buoyancy force, which acts in the
positive x-direction, is large enough both to inhibit the formation of the primary spike
on the upstream side of the secondary eddy and to induce a flow on the downstream
side of the thermal plume that results in a singularity. Observe from figure 10(b)
that a recirculation region forms between x = 2 and x = 3; this recirculation region
is present in all cases with Gr/Re2 > 6 and forms just prior to the onset of the
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Figure 10. Instantaneous streamlines for θ = 90◦, Gr/Re2 = 6. (a) t = 0.6, (b) t = ts = 1.4298.

singularity. It is not clear, however, whether this recirculation region plays a role in
the formation of the singularity or is a consequence of the events leading up to it.
It is interesting to note that there must be a value of Gr/Re2 between 5 and 6 for
which the solution contains both types of singularities occurring simultaneously; no
attempt, however, has been made to determine the value for which this occurs.

Similar behaviour is observed as the magnitude of the buoyancy force is increased
beyond Gr/Re2 = 6. Figures 12 and 13 show the streamlines and isotherms, respec-
tively, for the case with θ = 90◦ and Gr/Re2 = 10. Again the secondary recirculation
appears closer to the surface but at approximately the same time as in the forced-
convective case. However, in comparing figures 12(a) and 12(b), it is evident that the
secondary eddy remains largely unchanged and is no longer a primary feature of the
flow. Instead, the erupting plume of high-temperature fluid is convected downstream
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Figure 11. Isotherms in increments of T = 0.1 for θ = 90◦, Gr/Re2 = 6.
(a) t = 0.6, (b) t = ts = 1.4298.

by the buoyancy force, the temperature gradients intensify on the downstream side of
the plume, and a singularity occurs at time ts = 0.9590 at xs = 1.2294 and is moving
downstream with a velocity of us = 1.0268. Note that the singularity occurs much
sooner than the case with Gr/Re2 = 6, and its streamwise velocity is significantly
greater.

4. Discussion
Numerical solutions of the unsteady mixed-convection boundary-layer equations

for the flow induced by a rectilinear vortex above an infinite plane surface have
been obtained in Lagrangian coordinates. The solutions for various values of the
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Figure 12. Instantaneous streamlines for θ = 90◦, Gr/Re2 = 10. (a) t = 0.6, (b) t = ts = 0.9594.

inclination angle and magnitudes of the buoyancy force show that there is a strong
coupling between the fluid flow and heat transfer within the boundary layer. The
abrupt changes in the flow field as the eruption takes place cause severe gradients in
the temperature field and in the convective heat transfer coefficient along the surface.
In addition, the erupting boundary layer ejects a spire of high-temperature fluid from
adjacent to the surface into the outer flow, significantly enhancing thermal mixing.

The results also show that depending upon the orientation of the surface, buoyancy
forces acting on the heated fluid near the surface can alter the flow such that the
eruptive process is accelerated or delayed. The strong outflows that develop normal
to the surface during the unsteady separation process lead to the formation of a
high-temperature plume, and the action of the buoyancy force on this plume modifies
the unsteady separation singularity. In the forced-convection case, i.e. θ = 0◦, 180◦,
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Figure 13. Isotherms in increments of T = 0.1 for θ = 90◦, Gr/Re2 = 10.
(a) t = 0.6, (b) t = ts = 0.9594.

the unsteady eruption and resulting high-temperature plume convect upstream as
the singularity is approached. In the mixed-convection case, however, the upstream
motion of the erupting spike and corresponding high-temperature plume is either
accelerated, decelerated or even reversed by the action of the buoyancy force. When
the inclination angle of the surface is such that 0◦ < θ < 180◦, the buoyancy force acts
in the opposite direction to the local adverse pressure gradient, effectively dampening
its effect on the boundary layer and delaying separation for small magnitudes of
the buoyancy force. For larger values of Gr/Re2, the buoyancy force acting on the
high-temperature plume is sufficient to reverse its direction and induce a somewhat
weaker singularity on the downstream side of the high-temperature plume. When
180◦ < θ < 360◦, on the other hand, the buoyancy force acts in the same direction
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as the adverse pressure gradient, and the separation process is accelerated. Note
that these results have been obtained using the Boussinesq approximation for which
(Ts − T∞)/T∞ � 1; therefore, the strong coupling observed here can be achieved with
relatively small differences in temperature between the surface and the ambient flow.

It is of interest to consider how the singular behaviour that occurs in the unsteady
mixed-convection boundary-layer results shown here relates to the singular structures
observed in similar flows, namely the non-interactive boundary-layer singularity found
by Van Dommelen & Shen (1982) and Elliott et al. (1983) and its modified form for
the case of a moving wall determined by Degani et al. (1998). The non-interactive
boundary-layer singularity applies to the fluid flow portion of the forced-convective
cases in the present investigation. A similarity solution develops for the flow locally
surrounding the separation point as the singularity time is approached. This similarity
solution, sometimes referred to as the terminal boundary-layer solution, describes a
flow structure in which the boundary layer splits into two shear layers that surround
an intermediate region in which the velocity is nearly constant. The upper shear layer
moves away from the surface at a rate proportional to (ts − t)−1/4, where ts is the
non-interactive singularity time.

The influence of a moving wall on the non-interactive boundary-layer singularity
has been investigated by Degani et al. (1998). They have found that as the speed of
the wall is increased in the same direction as the local mainstream flow, unsteady
separation can be suppressed due to the elimination of the upper shear layer. The
strength of the upper shear layer is given by U∞(xs) − us, where U∞(xs) is the local
mainstream velocity (see equation (2.1)) at the streamwise location of the singularity,
and us is the speed of the separation point at the time the singularity occurs.
Suppression of the unsteady separation singularity for the case of a moving wall
occurs when U∞(xs) − us → 0. In order to determine whether unsteady separation
is suppressed by a similar mechanism in the unsteady mixed-convection boundary
layer considered here, the data in figure 9 for θ = 90◦ is used to determine whether
U∞(xs) − us vanishes with increasing buoyancy force. Recall that for this case, the
singularity time is delayed on increasing Gr/Re2 up to some value of the buoyancy
force in the range 5 < Gr/Re2 < 6 at which the singularity is suppressed, and above
which the flow evolves rather differently, terminating in a singularity that is somewhat
weaker and occurs at a different location. As shown in table 1, U∞(xs)−us experiences
an abrupt step change between 5 < Gr/Re2 < 6 when the primary singularity is
suppressed, rather than a gradual approach to zero as in the case of a moving wall.
Therefore, suppression of unsteady separation is apparently by a different mechanism
for the mixed-convection boundary layer than for the case with a moving wall, as the
strength of the upper shear layer does not weaken significantly prior to suppression
of separation.

Returning to the issue of the structure of the singularity that occurs in the unsteady
mixed-convection boundary-layer equations, this structure apparently is significantly
more complex than that found by Van Dommelen & Shen (1982) and Elliott et al.
(1983) for the non-interactive boundary-layer singularity. It must have as a special case
the non-interactive boundary-layer singularity, i.e. for forced-convection flow, but must
also encompass the coupled effects of the momentum and thermal boundary layers
and the weaker singularity that occurs, for example, when θ = 90◦ and Gr/Re2 > 5.
This latter singularity probably has a structure that is significantly different from that
for the forced-convective case.

The unsteady mixed-convection boundary-layer results shown here suggest that
it may be possible to use local heating (or cooling) of the surface to control the
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Gr/Re2 ts xs us U∞(xs)− us
0.0 1.0127 −0.2243 −0.4951 3.3035
2.0 1.1200 −0.1532 −0.3729 3.2812
4.0 1.3373 −0.0818 −0.2235 3.1969
5.0 1.4954 −0.0233 −0.1109 3.1088
6.0 1.4298 1.3920 0.5368 −0.1831
7.0 1.2607 1.3379 0.6665 −0.2328
8.0 1.1335 1.2927 0.7870 −0.2894

10.0 0.9594 1.2293 1.0244 −0.4341

Table 1. Variation of ts, xs, us and U∞(xs)− us with Gr/Re2 for the case with θ = 90◦.

unsteady separation process in certain applications. Other methods of control, such
as suction (Karim & Acharya 1994; Alrefai & Acharya 1996) or a moving wall
(Degani et al. 1998) are potentially well suited to situations in which the location of
unsteady separation is known a priori and changes little for various flow conditions.
This is true, for example, in the case of leading-edge separation on airfoils (Karim &
Acharya 1994; Degani, Li & Walker 1996). In many cases, however, the location of
unsteady separation can vary significantly with flow conditions; therefore, these fixed
methods of control would be difficult to implement. This is true, for example, in the
vortex-induced eruption that occurs on the upper surface of a pitching airfoil and
causes detachment of the dynamic stall vortex. In such situations it may be possible
to control unsteady separation using a locally heated (or cooled) surface. Some means
of sensing where and when unsteady separation will occur would be necessary, and
then the local region determined to have optimum influence upon the separation
process could be heated (or cooled) at the appropriate time during the evolution
of the flow. The resulting buoyancy forces could then be used to accelerate, delay
or alter the nature of the unsteady separation depending on the orientation of the
surface and the magnitude of the buoyancy force. For example, when the buoyancy
force acts in the opposite direction to the adverse pressure gradient, the singularity is
delayed for small Gr/Re2. For larger magnitudes of the buoyancy force, the primary
singularity can be suppressed and a somewhat weaker secondary singularity induced
at a different location.
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